

FREEFORM optics design & manufacturing

19.4.23

Nimrod Nissim

Capabilities needed for FF optics

Advanced optical-design & Production capabilities

SPO

The complexity of optic components

The complexity of optic components

A-spheric & FF surfaces

Abbe 1902

$$z(r)=rac{r^2}{R\left(1+\sqrt{1-(1+\kappa)rac{r^2}{R^2}}
ight)}+lpha_4r^4+lpha_6r^6+\cdots,$$

Zernike in 1934

 $Z_{j}(\rho,\phi) = Z_{n}^{m}(\rho,\phi)$ $= \begin{cases} \sqrt{n+1}R_{n}^{0}(\rho), & m = 0\\ \sqrt{2(n+1)}R_{n}^{m}(\rho)\cos m\phi, & m \neq 0 \text{ (even)},\\ \sqrt{2(n+1)}R_{n}^{m}(\rho)\sin m\phi, & m \neq 0 \text{ (odd)} \end{cases}$ $R_{n}^{m}(\rho) = \sum_{k=0}^{(n-m)/2} \frac{(-1)^{k}(n-k)!}{k! \left(\frac{n+m}{2}-k\right)! \left(\frac{n-m}{2}-k\right)!} \rho^{n-2k} \text{ Radial Function}$

Aspheric- Perturbed Conical Polynomials

Power series with conic section base Z(r) Coordinates: Z; r K= Conic constant R=vertex radius <u>Rotational symmetry</u>

Zernike Polynomials

Power series of 3D surface Z(ρ,φ)
Coordinates: Z; ρ; φ
n- Radial order
m- Azimuthal
Defined over circular aperture
Orthogonal Polynomials

A-spheric & FF surfaces

Forbes 2012

$$f(\rho,\theta) = \frac{c\rho^2}{1+\sqrt{1-c^2\rho^2}} + \frac{1}{\sqrt{1-c^2\rho^2}} u^2 (1-u^2) \sum_{n=0}^N a_n^0 Q_n^0 (u^2) + \frac{1}{\sqrt{1-c^2\rho^2}} \sum_{m=1}^M u^m \sum_{n=0}^N \left[a_n^m \cos(m\theta) + b_n^m \sin(m\theta) \right] Q_n^m (u^2),$$

A "good" polynomial should fulfill some basic characteristics:

- Orthogonal
- Continuous Derivatives
- Better resistant to "ill conditioning"

Gradient-orthogonal Q-polynomials

Coordinates: f; ρ; φ

 $u = \rho / \rho_{max}$

pmax- Aperture radius c- Curvature of best fit sphere m,n – order indices <u>Describes the deviation from a best</u> <u>fit sphere</u> Orthogonal Polynomials Q_n^0 -represents the rotationally symmetric slope-orthogonal Q_{bfs} polynomials Q_n^m -represents the gradient-orthogonal Q polynomials

קיימים סוגים נוספים של פולינומים...

The need for FF

The need for FFO

The tradeoff:

High performance = Large & Expensive system

CNC manufacturing of high precision optics enables us to: reduce size and cost while optimizing performance

The need for FF

Examples for FF based systems

Eyebox

AR/VR

HUD for automotive

Virtual image

Light-field

Virtual image distance

Windshield

AR 3D HUD

Space telescopes

Nonconcentric imaging

PO

Phase correctors

Eye-trackin camera

Optics with severe volume constraints

A-spheric & FF surfaces

Points cloud

Surface can also be defined in numerical way.

In that case the manufacturer verifies sufficient density for interpolation as well as margins for extrapolation.

Close interaction is needed with the customer.

The choice of the mathematical representation to describe the surface affects the efficiency of the optimization. The geometry of the surface obtained, as a result of the design, determines its manufacturability.

There is no clear method in this matter, and the experience of the optical designer has a lot of weight in the successful choice of the surface representation

Main production technologies

Conventional lapping	Accuracy is guaranteed through a simple and well-defined mechanical mechanism. Suitable for spherical and cylindrical surfaces. High accuracies		
SPDT	Enables high precision (principle of operation of a lathe) Limited to producing rotational symmetry(*) and only to "continuous" materials		
CNC Grinding & Polishing	Enables the production of all types of surfaces (CNC principle in metal) Two-stage processing (milling + greening) A wide variety of materials It is difficult to achieve high accuracy		SPO
Laser grinding & polishing	not yet commercial		
MRF- Magneto Rheological Finishing IBF- Ion Beam Finishing	Technologies used for final polishing and minimal Figure-Error		
Glass Molding	Economically justified only in large quantities - reduced accuracy		
(DO			

(*) Slow Servo SPDT machines can produce certain types of FFO surfaces

Main production technologies

Conventional lapping

diamond tool Centre of curvature blank bla

PO

Grinding & Polishing of Glass

IR Materials •Germanium •Zinc Selenide •Zinc Sulfide •Chalcogenide Glasses •Silicon Metal Alloys

Polymers

Multi variable process

 $z(r) = rac{r^2}{R\left(1 + \sqrt{1 - (1 + \kappa)rac{r^2}{R^2}}
ight)} + lpha_4 r^4 + lpha_6 r^6 + \cdots,$

Pressure on surface Kinematics Machine errors Base line errors Surface measurements Surface analysis Correction strategy Correction errors Mechanical axis errors Many degrees of freedom!

Optic surface definition Material Grinding / polishing process of choice Tool type Polishing pad type Polishing slurry Local material removal

rate

SPO

Answer – Digital Manufacturing Infrastructure

Digital Manufacturing Infrastructure

DMI: Major benefits for consumers

Thank you

