s PQ ‘ BEYOND THE BOUNDARIES
OF OPTICAL SYMMETRY

FREEFORM optics

design & manufacturing
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Capabilities needed for FF optics

Advanced
optical-design &
Production
capabilities

Optical Design J
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The complexity of optic components

[ Refractive & Reflective Elements ]

Mirrors & Complex ] [ Partial Rotation
Symmetry

contours

] [ Reflection Symmetry ] [ No Symmetry ]

[ A-Spherical ]

Cylindrical/
A-Cylindrical

Toric/A-Toric ] [ Free Form ]




The complexity of optic components

Sphere A-Sphere
Cylinder . A-Cylinder
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A-spheric & FF surfaces

Abbe 1902
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Aspheric- Perturbed Conical Polynomials

Power series with conic section base Z(r)
Coordinates: Z; r

K= Conic constant

R=vertex radius

Rotational symmetry

Zernike in 1934
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Radial Function
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Zernike Polynomials

Power series of 3D surface Z(p, )
Coordinates: Z; p; ¢

n- Radial order

m- Azimuthal

Defined over circular aperture
Orthogonal Polynomials



A-spheric & FF surfaces

Forbes 2012
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A “good” polynomial should fulfill some basic characteristics:
* Orthogonal

e Continuous Derivatives

e Better resistant to “ill conditioning”
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Gradient-orthogonal Q-polynomials
Coordinates: f; p; ¢

U = P”jﬂmﬂ

pmax- Aperture radius

c- Curvature of best fit sphere

m,n — order indices

Describes the deviation from a best

fit sphere
Orthogonal Polynomials

QP -represents the rotationally
symmetric slope-orthogonal Q. polynomials

Q™ -represents the gradient-orthogonal Q
polynomials
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The need for FFO Thetaacott

High performance = Large & Expensive system

CNC manufacturing of high precision optics enables us to:
reduce size and cost while optimizing performance




The need for FF
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Examples for FF based systems

AR/VR

Nonconcentric imaging

HUD for automotive
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A-spheric & FF surfaces

Points cloud
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Surface can also be defined in numerical way.
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In that case the manufacturer verifies sufficient
density for interpolation as well as margins for
extrapolation.
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Close interaction is needed with the customer.
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The choice of the mathematical representation to describe the surface affects the efficiency of the optimization.
The geometry of the surface obtained, as a result of the design, determines its manufacturability.

There is no clear method in this matter, and the experience of the optical designer has a lot of weight in the
successful choice of the surface representation
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Conventional lapping

Accuracy is guaranteed through a simple and well-defined
mechanical mechanism.

Suitable for spherical and cylindrical surfaces.

High accuracies

SPDT

Enables high precision (principle of operation of a lathe)
Limited to producing rotational symmetry(*) and only to
"continuous" materials

CNC Grinding & Polishing

Enables the production of all types of surfaces (CNC principle in
metal)

Two-stage processing (milling + greening)

A wide variety of materials

It is difficult to achieve high accuracy

T

Laser grinding & polishing

not yet commercial

MRF- Magneto Rheological Finishing
IBF- lon Beam Finishing

Technologies used for final polishing and minimal Figure-Error

Glass Molding

Economically justified only in large quantities - reduced accuracy

SPO
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Main production technologies

Conventional lapping

centre of curvature
of lens surface

lens lens
blank blank

Grinding & Polishing of Glass

diamond

tool -~ Spherical wheel
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Multi variable process
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Pressure on surface

Kinematics
Machine errors

Base line errors

Surface measurements
Surface analysis
Correction strategy

Correction errors

Mechanical axis errors

Many degrees of
fredom!

Optic surface definition

Material
Grinding / polishing
process of choice

Tool type

Polishing pad type
Polishing slurry

Local material removal
rate



Answer — Digital Manufacturing Infrastructure
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Digital Manufacturing Infrastructure
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DMI: Major benefits for consumers

30% Shorter Lower
Prototype Cycle Development
Time Risk at

Customer’s

@ Critical Path
/ || \
\ ” .@ /

30% Engineerin Manufacturing
Cost Reduction Control &

Transparency




Thank you
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