CZECH AUSTRIAN PHOTONICS
 -2023

(Photonic) quantum computer: What is it and what can we do with it?

Who am I?

Iris Agresti

Post-doctoral researcher in the quantum informatior and quantum computation group

Who am I?

Iris Agresti
Post-doctoral researcherin the quantum information
and quantum computation group WE PLAY WITH LASERS!

When we say «computer», we usually think of...

When we say «computer», we usually think of...

When we say «computer», we usually think of...

What is the formal definition?

Formal definition

Alan Turing (1912 - 1954)

Formal definition

Alan Turing (1912 - 1954)

Formal definition

Alan Turing (1912-1954)

A Turing machine is a device that can perform a specific mathematical operation on an input, coming from an alphabet.

What's the difference?

What's the difference?

Our computers still make operations on inputs coming from an alphabet, but they can perform any operation we want: they are Universal

The BIT

The alphabet that a computer uses is made of only two elements

0 1

The BIT

The alphabet that a computer uses is made of only two elements

Difficult problems

A computer can do everything... but how hard is it for it?

Some problems can be solved efficiently, Others, like the factorization, require too much time/memory

Difficult problems

Many security and cryptography protocols rely on the fact that codes cannot be cracked in a short time by an adversary.

Quantum bit

We can use quantum states for our computation.

Using quantum bits enables more efficient computation.

Difficult problems

$$
\begin{aligned}
& 2=2 \times 1 \\
& 3=3 \times 1 \\
& 4=2 \times 2
\end{aligned}
$$

$$
100=2 \times 2 \times 5 \times 5
$$

Peter Shor(1954)

A quantum computer can factorize large numbers efficiently!

Latest news

Three experiments have been performed experimentally showing that quantum computers are more powerful than classical ones

Google AI Quantum, Mountain View, CA, USA (2019)

University of science and technology of China, Hefei, Anhui (2020)

Xanadu, Toronto, ON, Canada
(2022)

How can we realize and manipulate qubits?

We can create quantum states through photons

Possible information encodings

Polarization

$|0\rangle$ and $|1\rangle$ are orthogonal polarization states

Path

$|0\rangle$ and $|1\rangle$ are different paths taken by photons

Why photons?

- They are easy to manipulate (high fidelity gates)

Projective measurement

Tunable circuits

Measurement building block

Why photons?

- Easy to generate

Spontaneous Parametric Down-Conversion

Quantum dots

Why photons?

- Easy to generate

- Easy to realize
- Entangled states

- Not on demand (low rates)

Quantum dots

- On demand (high rates)
- Hard to generate entangled states
- Versatile

Why photons?

- Fast and no interaction with environment

Low decoherence

P
Hard to implement two-qubit gates

Research lines in Vienna

Kernel estimation

Research lines in Vienna

Kernel estimation

Implementing tbe kernel function on a photonic circuit can give higher accuracies than the classical case.

Research lines in Vienna

Machine learning models require nonlinearities for the learning process

Research lines in Vienna

Memristor chip

Machine learning models require nonlinearities for the learning process

The operation of the chip conditioned on one output we get a nonlinear behaviour

Research lines in Vienna

Reinforcement learning

An agent learns through the interaction with the environment

Research lines in Vienna

Reinforcement learning

An agent learns through the interaction with the environment

2.4 mm

A quantum strategy guarantees a speedup in the learning

Future developments

