

Locations worldwide

asphericon

THE INTERNATIONAL SALES NETWORK

Company

Key figures I

ASPHERICON IN NUMBERS

Company Premises Germany and Czech Republic

JENA (HQ) AND JEŘMANICE SITE

- 1 R&D Center and prototyping manufacturing (1.600 sqm)
- 2 Main production (4.000 sqm)
- 3 Management and Administration
- 4 Expansion area (up to 10.000 sqm)

- Management and Administration
- 6 Main production (1.600 sqm)
- Expansion area (up to 12.000 sqm)

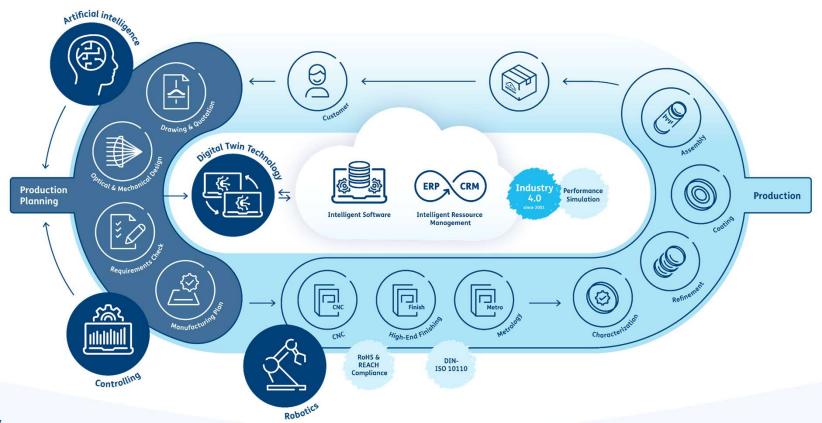
Locations worldwide

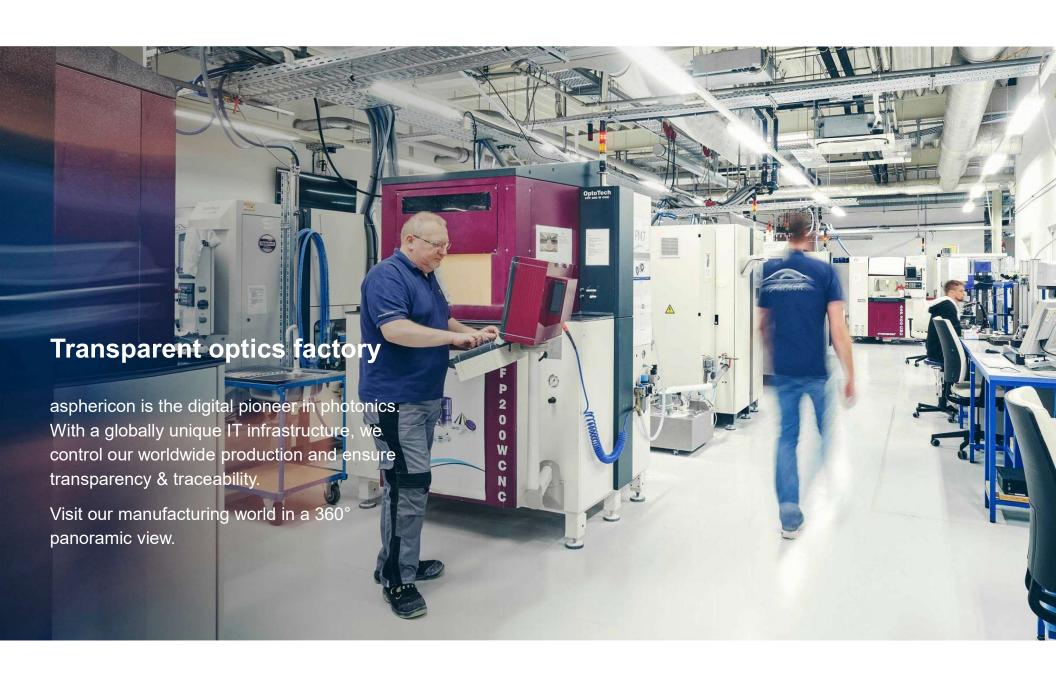
asphericon

THE INTERNATIONAL SALES NETWORK

Current production

Vizualization 2025/26:



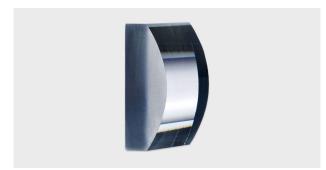


Fully digitized process landscape

INTEGRATED MANUFACTURING FOR HIGH-QUALITY AND EFFICIENT RESULTS

Precision out of passion

ASPHERICON SETS STANDARDS IN ASPHERE MANUFACTURING


Company

asphericon Custom

INDIVIDUAL AND UNIQUE - COSTUM-MADE ASPHERIC OPTICS

Aspheres

- = Maximum of precision (RMSi: up to 0.03 μm)
- = Diameter: 2.0 mm to 420 mm
- = Surface roughness: up to < 1 nm Rq

Acylinders

- = Shapes: plano-convex, plano-concave, bi-convex or bi-concave
- = Spherical and/or aspheric back-surface available
- = Outer shapes can be user-defined

Axicons

- = Large variety of shapes and sizes
- Materials: almost every variety of glass, silica, germanium, silicon, infrared glass and zerodur

asphericon Custom

INDIVIDUAL AND UNIQUE - COSTUM-MADE ASPHERIC OPTICS

Reflector On-Axis/Off-Axis

- Parabolic or custom-defined aspheric surface curvatures
- Materials: almost all types of glass, silicon, germanium, infrared glass and zerodur
- Production according to individual requirements for geometry and deflection angle

Spheres

- = Diameter: 8 300 mm
- Plano-convex/plano-concave, bi-convex/bi-concave lenses
- Achromatic singlets, doublets and triplets
- Material: crystals, e.g. germanium and silicon, metals, PMMA, IR materials

Doublets/Multiplets

- Shapes: any edge geometries, also steps
- Outer surfaces can be cylindrical or freeform
- = Diameter: up to 250 mm
- = < 10 µm ETV

Freeform/Monoliths

- Unconventional shapes, many material
- = Lenses, mirrors, monoliths
- Diameter: up to 300 mm
- = Excellent surface quality (up to at least RMSi 50 nm)
- CGH-free measurement including all position tolerances (complete component)

asphericon BeamTuning

BEAM EXPANSION HAS NEVER BEEN SO SIMPLE

a|BeamExpander

- Design wavelengths [nm]: 355, 532, 632, 780, 1064
- = Optimization to all wavelengths [355, 500-1600 nm]
- Guaranteed diffraction-limited up to 32x beam expansion

a|Waveλdapt

- Optimized adaptation to any wavelength from 500 to 1600 nm
- Compensation of divergent incoming beams up to 1 mrad

a|AspheriColl

- = Flexible choice of output beam diameter
- Simple mounting via metric fine thread

a|Adapter

- Intra-system adapters enable easy combination of BeamTuning elements
- Cross-system adapters guarantee high level of compatibility with systems
- a|Adapter tilt ensures precise alignment within beam path (flexibly tilted in x- and y-direction)

asphericon BeamBoxes - Mix & Match

INDIVIDUAL BOXES WITH BEAMTUNING ELEMENTS

a|BeamBox Essential

- Consisting of up to eight a|BeamExpander, a|AspheriColl, a|Waveλdapt and matching a|Adapters
- Available for wavelengths 355 nm, 532 nm, 632 nm, 780 nm and 1064 nm
- = Certified diffraction-limited system

a|BeamBox TopShape

- Consisting of up to five a|BeamExpanders, a|TopShape, a|AspheriColl and matching a|Adapters as well as MountedOptics
- Perfect support for applications in the field of metrology or microscopy

a|BeamBox AiryShape/SqAiryShape

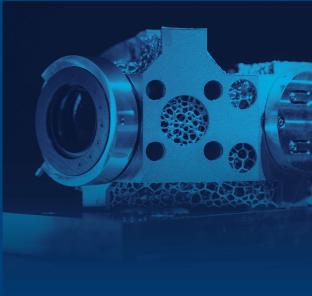
- Consisting of up to six a|BeamExpanders, a|AiryShape or a|SqAiryShape, a|AspheriColl and matching a|Adapters as well as a|MountedAspheres
- Perfect support applications in the field of material processing

Custom Systems

- 1. Miniaturized designs, e.g. monolithic (freeform) systems
- 2. High quality optical surfaces
- 3. Intelligent assembly concepts

- 4. Coatings for all wavelengths (UV-VIS-IR)
- 5. Perfect integration for high stability
- 6. Demanding materials, such as CaF2

System Provider



BeamTuning

- = World's first aspheric beam shaping and expansion system
- = High precision wavefront for all wavelengths

Fo+

- = Reflective beam shaper based on freeform optics
- Laser becomes a flexible tool (high laser power up to 10 kW, all wavelengths)

OEM-System

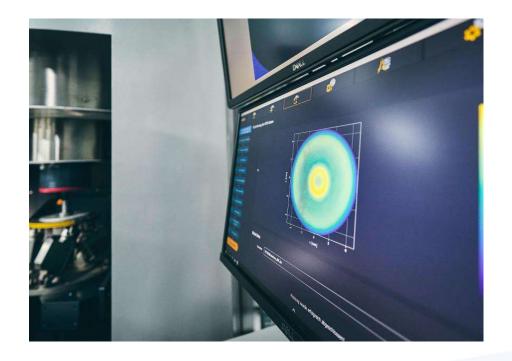
- = World's first aspheric Fizeau lenses
- = Largest measuring range
- = Up to three times lighter

Metrology

MOST ACCURATE RESULTS FROM THE SPECIALIST

- = Exact/retrievable at any time evaluation & documentation of measurement results by an integrated database system
- = Tactile measurement up to diameters of 260 mm, full-surface non-contact measurement up to 420 mm
- = Measurement/position check of freeform surfaces (form and positional tolerances, roughness, etc.), mounts, mounted optics and complete systems

Interferometric measuring (selection)

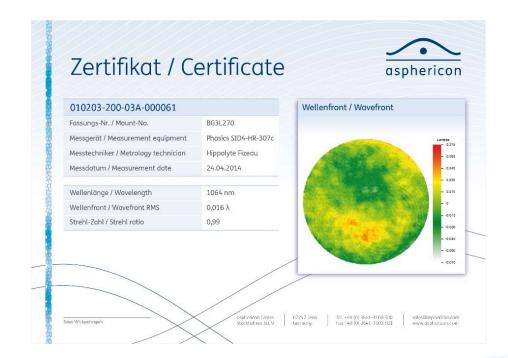

= LuphoScan 260 HD and 420, Zygo Verifire Asphere™

Tactile measuring (selection)

= MarSurf LD 120 Aspheric, Taylor Hobson - Talysurf PGI 1240/PGI 120

Optical measuring (selection)

= Zygo NewView™ 7100, MarSurf WM 100



Optical characterization

CERTIFIED MEASURING RESULTS

- Optical characterization of all optical components possible
- = Measuring the wave front using a Phasics SID4-HR wave front sensor
- = asphericon certificate includes :
 - Measurement of wave front (wavelength range 400 to 1064 nm, other wavelengths on request)
 - Measurement of MTF, PSF and Strehl ratio
 - Illustration of the wave front measurement

Sputtering

FOR ULTRA-HARD COATINGS WITH HIGH CLIMATIC/MECHANICAL STABILITY

= Spectroscopically monitored, non-reactive magnetron sputtering

= Substrate size: 15 - 250 mm

Customized shapes

• Materials: glass, fused silica, crystals

= Spectral range: UV - NIR (190 - 5100 nm)

= Residual reflection for AR coatings R_{abs}<0.05% (V-Coating)

= Reflection for laser line mirrors ≥99.98%

= Fields of application:

AR and HR layers

- Laser applications (low scattering, high reflection, high laser damage thresholds)
- Demanding environmental conditions (temperature fluctuations, heavy cleaning requirements)

Coating

asphericon

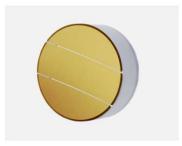
WIDE SPECTRUM OF HIGH-QUALITY COATINGS FOR EACH APPLICATION

Dielectric mirrors

- Can be made for single wavelengths, two wavelengths and the broad band range
- = High-Power coatings
- For powerful laser applications

AR coatings

- Maximum transmission of optics
- Single layers to broadband or reflectionminimizing coatings


Filter coatings

- Short, long or band-pass filters
- Based on dielectric layers

Beam splitters

 Customer-specific splitting ratio (T/R) is achieved with thermally stable dielectric layers

Metallic mirrors

- Reflective surfaces based on metals
- Very wide wavelength range
- = Constant degree of reflection

CNC processing

INDIVIDUAL SOLUTIONS AT THE HIGHEST LEVEL

- Specially developed, patented technology to control CNC grinding & polishing machines
- = Ability to simulate processing methods
- Digital documentation of all processing parameters
- = Prototypes right through large series can be manufactured with a high level of precision

Dimensions [ISO 10110-1]	
Diameter:	2 - 300 mm
Surface form tolerances [ISO 10110-5; 12]	
Irregularity – B (PV):	10 - 1 fringes
RMS Irregularity – RMSi – D:	3 - 0.3 fringes
Surface imperfections [ISO 10110-7]	
MIL – Scratch / Dig:	40 - 10
Surface texture [ISO 10110-8]	
Surface roughness - Rq:	1.5 – 3.0 nm

Technologies 24

Diamond turning

PRECISION RE-DEFINED - DIAMOND-TURNED OPTICS IN PERFECTION

- = Ultra-precise cutting using monocrystalline diamonds
- = Manufacturing of any optical surface with utmost precision
- = Achievable optical component geometries:
 - Aspheres, Spheres, Toroids, Cylinders, Microlenses, Fresnel structures, Freeforms, Diffractive optical elements

Manufacturing dimensions [ISO 10110-1]	
Achievable diameters:	1 - 420 mm
Center thickness:	up to 0.5 mm
Surface shape [ISO 10110-1; 5; 8; 12]	
Irregularity – B (PV):	100 nm
RMS Irregularity – RMSi – D:	20 nm
Surface roughness – Rq:	1 nm

Technologies 25

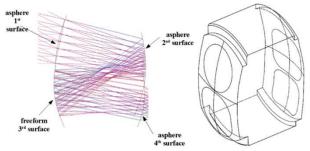
Production capabilities

LATEST TECHNOLOGIES FOR HIGH-QUALITY, EFFICIENT SOLUTIONS

	CNC Processing Standard Quality*	CNC Processing Precision Quality*	Diamond turning*	High-End Finishing*
Diameter [mm]	8 - 300	4 - 250	1 - 420	6 - 300
Irregularity (PV) [Fringes/µm]	4.00 / 1.00	1.00 / 0.30	0.10	0.30 / 0.08
RMSi [Fringes/µm]	1.20 / 0.30	0.30 / 0.09	0.02	0.10 / 0.03
MIL – Scratch/Dig	40 - 20	20 - 10	-	20 - 10
Surface roughness - Rq [nm]	2.0	1.5	1.0	0.5
Full-surface interferometric measurement	optional	optional	~	~

*maximum value

Technologies 26



Freeform Optics Plus fo+

asphericon

SMALLER, LIGHTER, MORE EFFICIENT – FREEFORM SURFACES

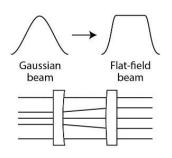


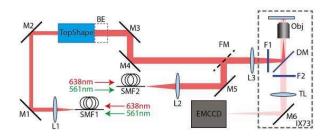
- = Merging of eight Thuringian Photonics companies and two research institutes
- = Development of methods for processing freeform surfaces on various materials (UV, VIS, IR) as well as of a germanium monolith for simplified positioning of IR optics (e.g. in thermographic systems) by asphericon
- = Areas of application: safety technology, remote sensing and material processing

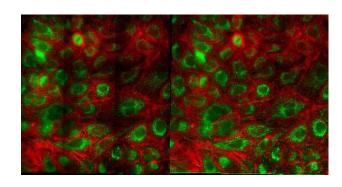
Jena Optronik – Sentinal-4

asphericor

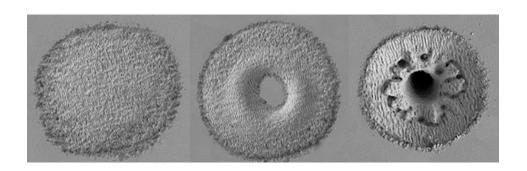
SOPHISTICATED MATERIALS. UNSURPASSABLE PRECISION.

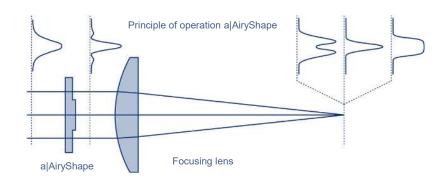



- = Satellite Sentinel-4 (part of the Copernicus Earth Observation Program) provides data on trace gases in the atmosphere from 2022 onwards
- = Development of sensors for position control by Jena-Optronik for use in satellites, production of lenses for the sensors by asphericon
- = Requirements: developing and manufacturing lenses to withstand extreme conditions in space, through development work and complex test procedures with demanding materials (e.g., CaF2)


CREOL – Beam shaper for microscopy

UNIFORM ILLUMINATION IN (FLUORESCENCE) MICROSCOPY

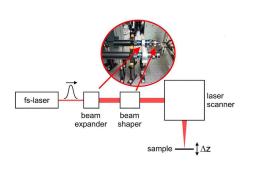


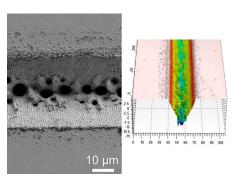

- = College of Optics and Photonics/University of Central Florida (CREOL) worked on further development of a laser-based microscope set-up for uniform illumination
- = asphericon's TopShape and BeamExpander allow the transformation of Gaussian beams into a flat Top-Hat profile and thus the uniform illumination of the slide
- = Homogeneity of illumination: > 95 %

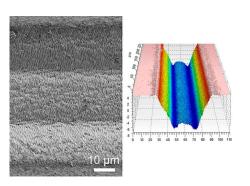
OSIM – Laser-included structuring

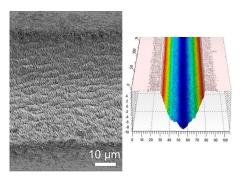
asphericor

SURFACE FUNTIONALIZATION WITH TAILORED TOP-HATS




- = Together with Otto-Schott-Institute für material research (OSIM) in Jena, impacts of Top-Hat intensity distributions were investigated with respect to their suitability for the generation of laser-induced periodic surface structures (LIPSS) on stainless steel
- = Compact beam shaper a|AiryShape was used to generate focused Top-Hat beams
- = Results:
 - Doubling of scanning velocity
 - Reduction of processing time by a factor of 2 with constant surface structure quality


OSIM – Laser material processing


asphericon

BEAM SHAPER FOR IMPROVED LASER MATERIAL PROCESSING

- = OSIM and asphericon examined different focused intensity distributions (e.g. Top-Hat, Donut) regarding their suitability for material processing with femtosecond lasers
- = To generate different focused beam profiles (Top-Hat, Donut, Beam Waist) in different working planes, compact beam shaper a|AiryShape was used
- = Result: enlargement of channel widths and smaller ablation depths due to more homogeneous distribution of pulse energy over a larger area

Jakub Tuček

Technical Sales

asphericon s.r.o.

Milířská 449 | Jeřmanice 463 12 Czech Republic

+420 739 589 634

j.tucek@asphericon.cz

www.asphericon.cz

33 Contact

Kateřina Bucharová

Sales & Purchase manager

asphericon s.r.o.

Milířská 449 | Jeřmanice 463 12 Czech Republic

+420 737 962 397

k.bucharova@asphericon.com

www.asphericon.cz

34 Contact